Hybrid Recurrent Wavelet Neural Network Control of PMSM Servo-Drive System for Electric Scooter

نویسنده

  • Chih-Hong Lin
چکیده

Due to nonlinear uncertainties of the electric scooter such as nonlinear friction force of the transmission belt and clutch, these will lead to degenerate tracking responses in command current and speed of the permanent magnet synchronous motor (PMSM) servo-driven electric scooter. In this study a novel hybrid recurrent wavelet neural network (HRWNN) control system is proposed to raise robustness of the PMSM servo-driven electric scooter under the occurrence of the variation of rotor inertia and load torque disturbance. First, the field-oriented mechanism is applied to formulate the dynamic equation of the PMSM servo drive. Then, a novel HRWNN control system is proposed to control motion for a PMSM servo-driven electric scooter. The HRWNN control system composed of a supervisor control, a RWNN and a compensated control with adaptive law. The online parameter training methodology with adaptive law in the RWNN is derived based on the Lyapunov stability theorem. Then adaptive law of the parameter in the RWNN can be updated by using the gradient descent method and the backpropagation algorithm. Finally, the effectiveness of the proposed control scheme is verified by experimental results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Response of Novel Adaptive Modified Recurrent Legendre Neural Network Control for PMSM Servo-Drive Electric Scooter

Because an electric scooter driven by permanent magnet synchronous motor (PMSM) servo-driven system has the unknown nonlinearity and the time-varying characteristics, its accurate dynamic model is difficult to establish for the design of the linear controller in whole system. In order to conquer this difficulty and raise robustness, a novel adaptive modified recurrent Legendre neural network (N...

متن کامل

High-Precision Intelligent Adaptive Backstepping H∞ Control for PMSM Servo Drive Using Dynamic Recurrent Fuzzy-Wavelet- Neural-Network

This paper proposes a high-precision intelligent adaptive backstepping control system (HPIABCS) for the position control of permanent-magnet synchronous motor (PMSM) servo drive. The HPIABCS incorporates an ideal backstepping controller, a dynamic recurrent-fuzzy-wavelet-neural-network (DRFWNN) uncertainty observer and a robust H∞ controller. First, a backstepping position controller is designe...

متن کامل

Robust Petri Recurrent-Fuzzy-Neural-Network Sliding-Mode Control for Micro-PMSM Servo Drive System

This paper proposes an intelligent hybrid control system (IHCS) for identification and control of micro-permanent-magnet synchronous motor (micro-PMSM) servo drive to achieve high precision tracking performance. Based on the principle of computed torque control (CTC), a position tracking controller is designed and analyzed. Moreover, to relax the requirement of the lumped uncertainty, an IHCS i...

متن کامل

Intelligent Hybrid Controller for Identification and Control of Micro Permanent-Magnet Synchronous Motor Servo Drive System Using Petri Recurrent-Fuzzy-Neural-Network

Abstract: This paper proposes an intelligent hybrid control system (IHCS) for identification and control of micro-permanent-magnet synchronous motor (micro-PMSM) servo drive to achieve high precision tracking performance. The proposed control scheme incorporates a computed torque controller (CTC) based on the sliding-mode technique, a Petri recurrent-fuzzy-neural-network (PRFNN) controller (PRF...

متن کامل

Adaptive Wavelet Neural Network Backstepping Sliding Mode Tracking Control for PMSM Drive System

This paper presents a wavelet neural network backstepping sliding mode controller (WNNBSSM) for permanentmagnet synchronous motor (PMSM) position servo control system. Backstepping sliding mode (BSSM) is utilized to guarantee favorable tracking performance and stability of the whole system, meanwhile, wavelet neural network (WNN) is used for approximating nonlinear uncertainties. The designed c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014